2009 Vol. 11, No. 6 1353–1356

Erythronolides H and I, New Erythromycin Congeners from a New Halophilic Actinomycete *Actinopolyspora* sp. YIM90600

Sheng-Xiong Huang,^{†,‡} Li-Xing Zhao,^{†,§} Shu-Kun Tang,[§] Cheng-Lin Jiang,[§] Yanwen Duan,[‡] and Ben Shen*,^{†,|],⊥}

Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410329, China, and Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China

bshen@pharmacy.wisc.edu

Received January 22, 2009

ABSTRACT

Erythronolides H and I, novel congeners of the clinically important antibacterial drug erythromycin A, have been isolated from the new halophilic actinomycete *Actinopolyspora* sp. YIM90600. In addition to producing the new erythromycin congeners, *A.* sp. YIM90600 produces erythromycin C in a high titer. The presence of the C-14 hydroxyl moiety and the C-6/C-18-epoxide in erythronolide H and the spiroketal moiety of erythronolide I sheds new insights into structural diversity of erythromycin analog libraries potentially accessible by combinatorial biosynthesis.

Erythromycin A (1) and related analogues have been clinically used for more than 50 years and are considered first line therapeutics for the treatment of upper and lower respiratory tract infections. Their antibacterial activity is attributed to inhibition of protein synthesis resulting from binding to the peptidyltransferase site of the bacterial 50S ribosomal subunit. A significant problem with the first-generation macrolide erythromycin A is its facile decomposition under acidic conditions resulting in loss of activity and

undesirable gastrointestinal side effects. Efforts to diversify the erythromycin scaffold in order to minimize side effects and in vivo degradation have constituted a major area of research resulting in second generation macrolides such as clarithromycin, azithromycin, azithromycin, and roxithromycin. The development of resistance to second generation macrolides, most notably in the form of ribosomal mutation (erm) or by efflux (mef) mechanisms, has hastened the discovery and development of a third generation of macrolide antibiotics

[†] Division of Pharmaceutical Sciences.

[‡] Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery.

[§] Yunnan Institute of Microbiology.

University of Wisconsin National Cooperative Drug Discovery Group.

Department of Chemistry.

⁽¹⁾ Katz, L.; Ashley, G. Chem. Rev. 2005, 105, 499–528.

^{(2) (}a) Itoh, Z.; Nakaya, K.; Suzuki, H.; Aria, H.; Wakabayashi, K. *Am. J. Physiol.* **1984**, 247, G688–G694. (b) Omura, S.; Tsuzuki, K.; Sunazuka, T.; Marui, S.; Toyoda, H.; Inatomi, N.; Itoh, Z. *J. Med. Chem.* **1987**, 30, 1943–1948.

⁽³⁾ Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. J. Antibiot. 1984, 37, 343–345.

including cethromycin (ABT-773),⁶ EP-420,⁷ and BAL-19403;⁸ these agents constitute recent additions to the repertoire of clinical antibacterial therapeutics. In addition to their use as antibacterial therapeutics, erythromycin derivatives have recently been reported to inhibit HIV-1 replication in macrophages through modulation of MAP kinase activity.⁹

Actinopolyspora sp. YIM90600, obtained from a dried salt lake in Xingjiang province, China, requires 8–30% salt for growth and shows little 16S rRNA gene sequence identity relative to its nearest halophilic neighbor species, Actinopolyspora halophila, Actinopolyspora mortivallis, and Actinopolyspora iraqiensi. Thus, A. sp. YIM90600 likely represents a new Actinopolyspora species. Moreover, A. sp. YIM90600, the culture extracts of which displayed significant antibiotic activity and moderate cytotoxicity, may represent the first strain belonging to the genus Actinopolyspora to be examined for its ability to produce bioactive natural products. Here we report the structures of erythronolides H (2) and I (3), two novel erythromycin congeners, along with known erythromycin biosynthetic intermediates erythronolide B (4), erythromycin C (5), and demethyl-erythromycin C (6).

The A. sp. YIM90600 strain was cultivated in a NaClbased medium for 28 days with vigorous shaking. Solid phase extraction of the broth using HP-20 resin, filtration through cheesecloth, and compound elution from the resin with acetone afforded, after solvent removal under vacuum, a gummy extract that was subjected to fractionation on silica gel. Multiple rounds of silica gel chromatography and C18 reverse phase HPLC afforded compounds 2-6. Structure elucidation of 2 was straightforward due to its structural similarity to known compounds 4-6. High resolution ESI-MS (HRESIMS) analysis of 2 gave an $[M + Na]^+$ ion at m/z 439.2292 consistent with a molecular formula of $C_{21}H_{36}O_8$ (calcd for $C_{21}H_{36}O_8Na$, 439.2302). Acquisition and analysis of NMR data for 2 (see Supporting Information) and comparison to data acquired for 4-6 suggested compound 2 to be a 14-membered macrolactone possessing an erythromycin-like core scaffold. This assignment was confirmed by high resolution 2D NMR spectroscopy. The regiochemistry of hydroxylation was independently assigned on the basis of HMQC and HMBC data (Figure 1). A

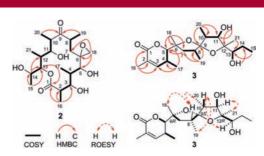


Figure 1. Key COSY and HMBC correlations for 2 and 3 as well as key ROESY correlations for 3.

spirocyclic epoxide at the C-6 was evident for **2** based on the observation of signals in the NMR spectrum [$\delta_{\rm C}$ 58.8 (s) and $\delta_{\rm C}$ 46.9 (t), $\delta_{\rm H}$ 2.76 and 2.27 (each 1H, d, J=7.0 Hz)], as well as, HMBC correlations of H₂-18 with C-5, C-6, and C-7; these data however fall short of assigning the stereochemistry at C-6. The rest of the stereochemistry of **2** was deduced by considering its biosynthetic origin and comparative analysis of NMR data relative to **4**–**6**. Although the relative configuration of **2** at C-14 could not be determined from spectroscopic data alone, the almost identical coupling constants between H-13 and H-14, as well as, similarities of other NMR data with those of (14*R*)-14-hydroxy TB-010 and (14*R*)-14-hydroxy TE-031 allowed us to assign an *R* configuration to C-14 of **2**.

The molecular formula of $C_{21}H_{34}O_6$, determined by HRESIMS for the $[M + Na]^+$ ion at m/z 405.2244 (calcd for $C_{21}H_{34}O_6Na$, 405.2244) and NMR data, indicated that **3** is also a C-21 polyketide having five degrees of unsaturation. The 1H , ^{13}C , and HSQC NMR spectral data (see Supporting Information) were consistent with the presence of one carbonyl group (δ_C 166.7), one trisubstituted double bond (δ_C 146.4, d; δ_C 126.8, s), three oxygenated tertiary carbons

Org. Lett., Vol. 11, No. 6, 2009

⁽⁴⁾ Bright, G. M.; Nagel, A. A.; Bordner, J.; Desai, K. A.; Dibrino, J. N.; Nowakowska, J.; Vincent, L.; Watrous, R. M.; Sciavolino, F. C. *J. Antibiot.* **1988**, *41*, 1029–1047.

⁽⁵⁾ Gasc, J. C.; Gouin d'Ambrieres, S.; Lutz, A.; Chantot, J. F. J. Antibiot. 1991, 44, 313-330.

^{(6) (}a) Or, Y. S.; Clark, R. F.; Wang, S.; Chu, D. T.; Nilius, A. M.; Flamm, R. K.; Mitten, M.; Ewing, P.; Alder, J.; Ma, Z. *J. Med. Chem.* **2000**, *43*, 1045–1049. (b) Hammerschlag, M. R.; Sharma, R. *Expert Opin. Invest. Drugs* **2008**, *17*, 387–400.

^{(7) (}a) Wang, G.; Niu, D.; Qiu, Y.-L.; Phan, L. T.; Chen, Z.; Polemeropoulos, A.; Or, Y. S. *Org. Lett.* **2004**, *6*, 4455–4458. (b) Stucki, A.; Gerber, P.; Acosta, F.; Cottagnoud, M.; Cottagnoud, P.; Jiang, L.; Nguyen, P.; Wachtel, D.; Wang, G.; Phan, L. T. *J. Antimicrob. Chemother.* **2008**, *61*, 665–669.

^{(8) (}a) Heller, S.; Kellenberger, L.; Shapiro, S. Antimicrob. Agents Chemother. 2007, 51, 1956–1961. (b) Dreier, J.; Amantea, E.; Kellenberger, L.; Page, M. G. P. Antimicrob. Agents Chemother. 2007, 51, 4361–4365.

⁽⁹⁾ Komuro, I.; Sunazuka, T.; Akagawa, K. S.; Yokota, Y.; Iwamoto, A.; Omura, S. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12509–12514.

^{(10) (}a) Gochnauer, M. B.; Leppard, G. G.; Komaratat, P.; Kates, M.; Novitsky, T.; Kushner, D. J. *Can. J. Microbiol.* **1975**, *21*, 1500–1511. (b) Yoshida, M.; Matsubara, K.; Kudo, T.; Horikoshi, K. *Int. J. Syst. Bacteriol.* **1991**, *41*, 15–20. (c) Ruan, J.; Mahmoud, A.; Zhou, Z.; Liang, H. *Int. J. Syst. Bacteriol.* **1994**, *44*, 759–763.

^{(11) (}a) Adachi, T. S.; Morimoto, S.; Kondoh, H.; Tagate, T.; Watanabe, Y.; Sota, K. J. Antibiot. **1988**, 41, 966–975. (b) Sasaki, J.; Mizoue, K.; Morimototo, S.; Adachi, T.; Omura, S. J. Antibiot. **1988**, 41, 908–915.

Scheme 1. Proposed Biosynthesis of 2-6 in A. sp. YIM90600 Modeled on Erythromycin Biosynthesis in Sacc. erythraea^{12a}

^a TE-catalyzed release of the full length polyketide intermediate from DEBS module 6 via cyclization paths **a** and **b** affords macrolide **7** and lactone **3a**; both serve as substrates for multiple oxygenases en route to **2**–**6**. ACP, acyl carrier protein; AT, acyl transferase; DEBS, deoxyerythronolide B synthase; KR, ketoreductase; KS, ketosynthase; TE, thioesterase.

 $(\delta_{\rm C}~82.1,~82.3,~113.8)$, six methines, three of which are oxygenated ($\delta_{\rm C}~84.8,~86.4,~77.3$), two methylene moieties ($\delta_{\rm C}~40.0,~23.6$), and seven methyl groups ($\delta_{\rm C}~11.5,~17.2,~13.7,~24.0,~13.0,~11.5,~21.9$). Two resonances in the ¹H NMR spectrum ($\delta_{\rm H}~3.05,~{\rm d},~J=5.5$ Hz, OH-11; $\delta_{\rm H}~2.98,~{\rm br},$ OH-13) lacking any carbon HSQC correlations were assigned to the two OH groups accounting for all 34 protons consistent with the molecular formula. The presence of two hydroxyl groups supported by this data is consistent with three heterocyclic moieties accounting for the degree of unsaturation displayed by 3.

Consistent with the UV-vis data, 3 possesses a sixmembered α,β -unsaturated lactone, as assigned on the basis of ¹H-¹H COSY correlations involving H-3/H-4 and H-4/ H-5,H₃-17, and long-range ¹H-¹³C HMBC correlations from the vinylic methyl group (H₃-16, $\delta_{\rm H}$ 1.90) to C-1 ($\delta_{\rm C}$ 166.7), C-2, and C-3 ($\delta_{\rm C}$ 146.4) and from the secondary methyl group (H₃-17, $\delta_{\rm H}$ 1.07) to C-3, C-4 ($\delta_{\rm C}$ 31.1), and C-5 ($\delta_{\rm C}$ 84.8). Further analysis of the ¹H-¹H COSY data revealed carbon connectivities of C-7/C-8/C-19, C-20/C-10/C-11, and C-13/C-14/C-15. Strong HMBC correlations of methyl signals of H₃-18, H₃-19, H₃-20, and H₃-21 with corresponding carbons support the assigned fragment connectivity deduced from COSY spectrum via three oxygenated tertiary carbons C-6, C-9, and C-12, respectively. Analysis of COSY correlations of OH-11 with H-11 and of OH-13 with H-13 as well as HMBC cross peaks of OH-11 with C-11 and C-12, and of OH-13 with C-14 confirmed the location of the two hydroxyl groups (Figure 1). These findings are consistent with the C-9 spiroketal ($\delta_{\rm C}$ 113.8, s), which, along with the lactone moiety, satisfy the degree of unsaturation originally determined on the basis of initial MS and 1D NMR data.

ROESY spectra were used to establish the relative stereochemistry of **3**. Although we have not yet determined its absolute stereochemistry, we envision **3** to possess the same stereochemistry as **1** on the basis of its biosynthetic origin (Scheme 1). Thus, as shown in Figure 1, the *S* configuration was assigned to the spiroketal carbon C-9, consistent with ROESY correlations of H_3 -19 with H-10, and of H_3 -20 with H-8. Similarly, ROESY cross-peaks of H_3 -18 with H-8 and of H_3 -21 with H-10 confirmed the *R* configuration at both C-6 and C-12 in 3. The configurations of all other asymmetric centers in 3 appear to be identical to those of the corresponding centers in 4, 5, and 6, as would be expected from their common biosynthetic origin (Scheme 1).

Erythromycin biosynthesis has been extensively investigated in Saccharopolyspora erythraea, featuring the deoxyerythronolide B synthase (DEBS)-catalyzed biosynthesis of 6-deoxyerythronolide B (7) from the acyl CoA precursors and subsequent C-6 and C-12 hydroxylations as well as other tailoring steps, converting 7 into 6, 5, and 1.12 Modeled on the established paradigm for erythromycin biosynthesis, both 2 and 3 could therefore be viewed as shunt metabolites of 5 and 6 in A. sp. YIM90600. Thus, as depicted in Scheme 1, DEBS-catalyzed synthesis is envisioned to afford the full length polyketide intermediate as an acyl-S-ester that is covalently linked to the acyl carrier protein domain of DEBS module 6. However, in contrast to erythromycin biosynthesis in Sacc. erythraea, release of the polyketide intermediate from DEBS in A. sp. YIM90600 is envisioned to proceed in two paths: (i) macrolactonization by the C-13 hydroxyl group affording 7 (path a) as has been demonstrated previously in Sacc. erythraea and (ii) nucleophilic attack by the C-5 hydroxyl group affording lactone 3a (path b), reminiscent of an engineered DEBS.¹³

C-6 and C-12 hydroxylations of **7** are catalyzed by two P-450 enzymes EryF and EryK, respectively, followed by

Org. Lett., Vol. 11, No. 6, 2009

^{(12) (}a) Staunton, J.; Wilkinson, B. Chem. Rev. 1997, 97, 2611–2629.
(b) Katz, L. Chem. Rev. 1997, 97, 2557–2575. (c) Lambalot, R. H.; Cane, D. E.; Aparacio, J. J.; Katz, L. Biochemistry 1995, 34, 1858–1866.

^{(13) (}a) Cortes, J.; Wiesmann, K. E. H.; Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlay, P. F. *Science* **1995**, *268*, 1487–1489. (b) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. *J. Am. Chem. Soc.* **1995**, *117*, 9105–9106. (c) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. *J. Am. Chem. Soc.* **1996**, *118*, 9184–9185.

other tailoring steps to afford **6**, **5**, and **1** in *Sacc. erythraea*. Homologues of EryF and EryK in *A*. sp. YIM90600 presumably are responsible for the formation of **4**, **5**, and **6**. Since **1** was not detected under any of the conditions examined, the homologue of EryG, an *O*-methyltransferase that catalyzes the conversion of **5** to **1** in *Sacc. erythraea*, is most likely absent in *A*. sp. YIM90600. Alternatively, C-6/C-18 epoxidation and C-14 hydroxylation of **7** could afford **2**. While such activities are not known for erythromycin biosynthesis in *Sacc. erythraea*, an analogous epoxidation, catalyzed by OleP, has been proposed for oleandomycin biosynthesis in *Streptomyces antibioticus*; ¹⁴ C-14 hydroxylation of erythromycins has also been reported from biotransformation and metabolism studies. ¹¹

The β -hydroxy lactone 3a produced in path b likely undergoes spontaneous C-2/C-3 dehydration to produce tetraol 3b although it is not clear if this occurs before or after C-6 and C-12 hydroxylations. Following installation of the C-6 and C-12 hydroxyl moieties, 3b likely undergoes spontaneous spiroketalization at C-9 to render 3 in a fashion analogous to the known acid-catalyzed inactivation of 1.15 C-6 and C-12 hydroxylations in both paths a and b are most likely catalyzed by the same enzymes, likely homologues of the EryF and EryK P-450s. 12 It is particularly intriguing that the enzyme specific for C-6 hydroxylation appears to recognize both the 14-membered macrolide such as 7 and the linear polyketide such as 3a as substrates but the enzyme specific for C-12 hydroxylation, while acting on 7 and 3a as supported by the isolation of 3-6, does not oxidize C-12 during biosynthesis of 2.

The discovery of 2 and 3 provides new insights into erythromycin biosynthesis. First, a homologous TE domain from A. sp. YIM90600 presumably is responsible for cyclizations resulting in both 14- or 6-membered lactones. This finding supports earlier studies with the DEBS TE domain from Sacc. erythraea; these features have been previously demonstrated by engineered DEBSs¹³ but are now reconfirmed by the natural erythromycin biosynthetic machinery in A. sp. YIM90600. Second, EryF and EryK for erythromycin biosynthesis in Sacc. erythraea are generally considered to act preferentially on macrolide substrates. 12 The isolation of 3 suggests that homologues of these enzymes can act equally well on linear substrates such as 3a. Contrasting this apparent substrate promiscuity is that 2 lacks C-12 hydroxylation, indicating that the EryK homologue may require the C-6 hydroxyl group for substrate recognition. Third, C-14 oxidation in 2 is likely carried out by an adventitious enzyme¹¹ in A. sp YIM90600 as there are no known C-14 oxygenases within the erythromycin biosynthetic gene cluster in Sacc. erythraea. 12 Alternately, the EryK homologue present in this new halophilic A. sp. YIM90600 strain may simply process the C-6/C-18 epoxide variant of 7 in a way that leads to hydroxylation at C-14 instead of C-12. Such a scenario is reminiscent of the PicK P-450 enzyme that is known to be involved in the production of four antibiotics in Streptomyces venzuelae by hydroxylating the C-10 and/or C-12 positions of 12- and 14-membered macrolides.¹⁶

Perhaps the most interesting insight into erythromycin biosynthesis by A. sp. YIM90600 is gleaned by considering

the C-6/C-18 epoxide of **2**, which is without precedent among publicly disclosed erythromycin analogues. The presence of this epoxide raises the possibility that it may result from the same P-450 enzymes responsible for C-6 hydroxylation in **4**—**6**, presumably an EryF homologue although EryF is not yet known to be bifunctional in this manner. Oxygenases with such dual activities are exceedingly rare, ¹⁷ and OleP is the only P-450 enzyme to our knowledge that has been implicated to possess such dual activities, catalyzing both hydroxylation at C-8 and epoxidation at C-8/C-8a in olean-domycin biosynthesis. ¹⁴

Erythromycin A is readily inactivated via acid catalyzed conversion to its enol ether and 10,11-anhydrospiroketal forms. ¹⁵ Semisynthetic approaches to circumvent this problem have been described but remain challenging due to the complexity of the erythromycin scaffold. ¹⁸ Compound 2 therefore represents a novel aglycone ¹² for chemical and/or enzymatic glycosylation approaches ¹⁹ to new erythromycin congeners with enhanced stability and/or altered modes of action. The C-14 hydroxyl and C-6/C-18 epoxide both represent new opportunities for macrolide modifications and new analog design to further expand the size and diversity of erythromycin analog libraries.

Finally, A. sp. YIM90600 strain produces large quantities (300 mg/L) of **5** even under suboptimal fermentation conditions. The high titer of **5** suggests that A. sp. YIM90600 may prove to be a superior erythromycin producer following further medium optimization and engineering efforts and thus, may satisfy erythromycin production/engineering needs not currently met by more well-established producers.

Acknowledgment. We thank the Analytical Instrumentation Center of the School of Pharmacy, UW—Madison, for support in obtaining MS and NMR data. This work was supported in part by NIH grant CA113297 (B.S.) and the Chinese Ministry of Education 111 Project B08034 (Y.D).

Supporting Information Available: Detailed experimental procedures, NMR spectra (1D and 2D) for compounds **2** and **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL900143J

1356 Org. Lett., Vol. 11, No. 6, 2009

^{(14) (}a) Shah, S.; Xue, Q.; Tang, L.; Carney, J. R.; Betlach, M.; McDaniel, R. *J. Antibiot.* **2000**, *53*, 502–508. (b) Gaisser, S.; Lill, R.; Staunton, J.; Mendez, C.; Salas, J.; Leadlay, P. F. *Mol. Microbiol.* **2002**, *44*, 771–781.

⁽¹⁵⁾ Hassanzadeh, A.; Barber, J.; Morris, G. A.; Gorry, P. A. J. Phys. Chem. A, 2007, 111, 10098–10104.

^{(16) (}a) Cane, D. E.; Graziani, E. I. *J. Am. Chem. Soc.* **1998**, *120*, 2682–2683. (b) Xue, Y.; Wilson, D.; Zhao, L.; Liu, H.-W.; Sherman, D. H. *Chem. Biol.* **1998**, *5*, 661. (c) Betlach, M. C.; Kealey, J. T.; Betlach, M. C.; Ashley, G. W.; McDaniel, R. *Biochemistry* **1998**, *37*, 14937–14942. (d) Zhang, Q.; Sherman, D. H. *J. Nat. Prod.* **2001**, *64*, 1447–1450.

^{(17) (}a) Hashimoto, T.; Matsuda, J.; Yamada, Y. *FEBS Lett.* **1993**, *329*, 35–39. (b) Guengerich, F. P. *Chem. Res. Toxicol.* **2001**, *14*, 609–650. (c) Guengerich, F. P. *Chem. Res. Toxicol.* **2008**, *21*, 70–83.

^{(18) (}a) Brunet, E.; Muńoz, M. D.; Parra, F.; Mantecŏn, S.; Juanes, O.; Rodríguez-Ubis, J. C.; Cruzado, M.-C.; Asensió, R. *Tetrahedron Lett.* **2007**, 48, 1321–1324. (b) Lewis, C. A.; Merkel, J.; Miller, S. J. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 6007–6011.

^{(19) (}a) Griffith, B. R.; Langenhan, J. M.; Thorson, J. S. *Curr. Opin. Biotechnol.* **2005**, *16*, 622–630. (b) Williams, G. J.; Gantt, R. W.; Thorson, J. S. *Curr. Opin. Chem. Biol.* **2008**, *12*, 556–564.